Using our research, best practices and expertise, we help you understand how to optimize your business processes using applications, information and technology. We provide advisory, education, and assessment services to rapidly identify and prioritize areas for improvement and perform vendor selection
We provide guidance using our market research and expertise to significantly improve your marketing, sales and product efforts. We offer a portfolio of advisory, research, thought leadership and digital education services to help optimize market strategy, planning and execution.
Services for Technology Vendors
We provide guidance using our market research and expertise to significantly improve your marketing, sales and product efforts. We offer a portfolio of advisory, research, thought leadership and digital education services to help optimize market strategy, planning and execution.
Kognitio announced the addition of MultiDimensional eXpressions (MDX) capabilities for its WX2 product line. John Thompson, CEO of U.S. operations, and Sean Jackson, VP of marketing, shared some of the details with me recently. I find the marriage of MDX and large-scale data both technically challenging and potentially valuable to the market.
Kognitio develops and markets a massively parallel processing (MPP) database system targeted at the business intelligence and data warehousing market for use as an analytical database. WX2 is available as on-premises software, an appliance or software as a service (SaaS). The product has a relatively long history, having been developed in the early 1990s as part of Whitecross Systems, which merged with Kognitio in 2005. Headquartered in the U.K. the company is making a push for a bigger presence in the U.S. using funds raised for the purpose in December.
MDX provides more powerful ways than SQL to express relationships between data elements that are organized into cubes for online analytical processing (OLAP) analysis. Although a number of vendors have implemented OLAP capabilities on top of relational databases (referred to as ROLAP), it’s difficult to create meaningful sets of derived data using this approach. MDX makes it easier to express formulaic relationships between different data elements, thus enabling organizations to create relatively sophisticated historical or prospective measures to assess or project the performance of their business. To illustrate the difference, with SQL you could project sales as a percentage of last year’s sales, but with MDX you could project sales based on last year’s sales along with this year’s advertising programs and hiring plans and include a projected ramp-up period for each sales person. Using MDX it also is much easier to create what-if and planning types of analyses. Our benchmark research shows that only 22% of organizations currently can conduct what-if analysis for planning and forecasting, but 84% said it is important or very important to add these capabilities for decision-making and performance management.
Let me note that providing MDX or other what-if analyses over large amounts of data presents some significant technical challenges; these are mostly based around performance issues, although the amount of memory required for the analyses can be another issue. Because MDX makes it easier to express complex formulas, any calculation could reference any other data point in the entire data set. The challenge lies in working through the calculation dependencies and getting the necessary data into memory quickly to perform the calculations and deliver the results. As I pointed out in the MPP blog post referenced above, it becomes even more challenging when the data can reside on another node in the MPP system.
Kognitio will introduce one of the first products to combine MPP and MDX capabilities. SAP also provides MDX capabilities for its high-performance analytic appliance (SAP HANA), which my colleague commented on. As more and more data gets stored and analyzed using MPP systems, the MDX capabilities can help organizations produce more accurate analyses of where their business is headed and thus make better business decisions. The alternative today is to operate on subsets of data, which can potentially reduce the accuracy of the results or can lead to more complicated systems that attempt to combine results from multiple separate analyses. The MDX capabilities of Kognitio’s WX2, referred to as Pablo, are not a separate product but are built into it. The company touts these features as helping with the process of producing and managing analytic cubes. While these capabilities will help with that process by maintaining the cubes directly within WX2, I see as much potential value in being able to do more meaningful analyses over larger amounts of data.
These new MDX capabilities are scheduled for availability in June. Initially at least they come with some caveats. If you are evaluating Kognitio, be aware that the initial target client tool is Excel pivot tables. You’ll have to wait to use another BI front-end tool. I also advise you to explore what subset of MDX is supported to make sure the expressions that are critical to your business can be included in your models. Also, Kognitio provides no inherent mechanism to process updates for purposes of what-if analysis, but the company claims you can update the underlying relational data using other mechanisms and the cubes will be recalculated automatically. Finally the biggest caveat will be performance. In addition to assessing the overall performance of the new system vs. existing OLAP systems, you will want to see how much memory is required for the cubes and what happens when the system exceeds the available amount of physical memory. The litmus test will be to define a cube that is larger than the memory on one of the nodes and see whether it continues to perform adequately.
Regardless of whether Kognitio gets it right in the first release, it’s encouraging to see vendors advancing the types of analytics that can be performed on large data. I expect others to follow suit, and that will be good for business users who need to perform planning and what-if analysis on ever larger amounts of data.
Let me know your thoughts or come and collaborate with me on Facebook, LinkedIn and Twitter .
Regards,
David Menninger
David Menninger leads technology software research and advisory for Ventana Research, now part of ISG. Building on over three decades of enterprise software leadership experience, he guides the team responsible for a wide range of technology-focused data and analytics topics, including AI for IT and AI-infused software.
Ventana Research’s Analyst Perspectives are fact-based analysis and guidance on business,
Each is prepared and reviewed in accordance with Ventana Research’s strict standards for accuracy and objectivity and reviewed to ensure it delivers reliable and actionable insights. It is reviewed and edited by research management and is approved by the Chief Research Officer; no individual or organization outside of Ventana Research reviews any Analyst Perspective before it is published. If you have any issue with an Analyst Perspective, please email them to ChiefResearchOfficer@ventanaresearch.com