Organizations today have huge volumes of data across various cloud and on-premises systems which keep growing by the second. To derive value from this data, organizations must query the data regularly and share insights with relevant teams and departments. Automating this process using natural language processing (NLP) and artificial intelligence and machine learning (AI/ML) enables line-of-business personnel to query the data faster, generate reports themselves without depending on IT, and make quick decisions. Some organizations have started using NLP in self-service analytics to quickly identify patterns and simplify data visualization. Our Analytics and Data Benchmark Research finds that about 81% of organizations expect to use natural language search for analytics to make timely and informed decisions.
ThoughtSpot Enables Simpler Analytics with AI and NLP
Topics: embedded analytics, Analytics, Business Intelligence, Data Integration, Data, natural language processing, data lakes, data operations, AI & Machine Learning, data platforms
Organizations have become more agile and responsive, in part, as a result of being more agile with their information technology. Adopting a DevOps approach to application deployment has allowed organizations to deploy new and revised applications more quickly. DataOps is enabling organizations to be more agile in their data processes. As organizations are embracing artificial intelligence (AI) and machine learning (ML), they are recognizing the need to adopt MLOps. The same desire for agility suggests that organizations need to adopt AnalyticOps.
Topics: business intelligence, Analytics, Data Governance, Data, Digital Technology, data operations, data platforms