In today’s data-driven world, organizations need real-time access to up-to-date, high-quality data and analysis to keep pace with changing market dynamics and make better strategic decisions. By mining meaningful insights from enterprise data quickly, they gain a competitive advantage in the market. Yet, organizations face a multitude of challenges when transitioning into an analytics-driven enterprise. Our Analytics and Data Benchmark Research shows that more than one-quarter of organizations find it challenging to access data sources and integrate data and analytics in business processes. Vendors such as IBM offer a broad set of analytics tools with self-service capabilities that allows organizations to reduce IT dependencies and enables decision-makers to recognize performance gaps, market trends and new revenue opportunities. Its technology can simplify data access for self-service applications, enabling users to make business decisions informed by insights and take the guesswork out of decision-making.
Topics: embedded analytics, Analytics, Business Intelligence, IBM, IBM Watson, AI and Machine Learning
Cloud Computing Realities Part 3: Business Continuity
In my previous perspectives on cloud computing, I addressed some of the realities of cloud costs as well as hybrid and multi-cloud architectures. In the midst of the pandemic, my colleague, Mark Smith, authored a series of perspectives on considerations for business continuity in general, beginning with this look at some of the investments organizations must make to mitigate the risk of business disruptions. In this perspective, I’d like to address some of the realities of business continuity and cloud computing and how they impact the digital technologies of an organization. The cloud can be both advantageous and disadvantageous when it comes to providing business continuity.
Topics: Business Continuity, Cloud Computing, Digital Technology, digital business
If you’ve ever been to London, you are probably familiar with the announcements on the London Underground to “mind the gap” between the trains and the platform. I suggest we also need to mind the gap between data and analytics. These worlds are often disconnected in organizations and, as a result, it limits their effectiveness and agility.
Topics: business intelligence, embedded analytics, Analytics, Data Governance, Data Management, data operations, Analytics & Data