David Menninger's Analyst Perspectives

Augmented Intelligence Reduces Dependency on AI/ML Skill Sets

Posted by David Menninger on Sep 15, 2022 3:00:00 AM

Business intelligence has evolved. It now includes a spectrum of analytics, one of the most promising of which has been described as augmented intelligence. Some organizations have used the term to describe the practical reality that artificial intelligence with machine learning is not replacing human intelligence, but augmenting it. The term also represents the application of AI/ML to make business intelligence and analytics tools more powerful and easier to use. It’s this latter usage that I prefer and I’d like to explore in this perspective.

Read More

Topics: Analytics, Business Intelligence, natural language processing, AI & Machine Learning, Analytics & Data, Collaborative & Conversational Computing

Palantir Operationalizes Analytics and Data for Actions and Decisions

Posted by David Menninger on Aug 26, 2022 3:00:00 AM

Organizations are managing and analyzing large datasets every day, identifying patterns and generating insights to inform decisions. This can provide numerous benefits for an organization, such as improved operational efficiency, cost optimization, fraud detection, competitive advantage and enhanced business processes. By bringing the right, actionable data to the right user, organizations can potentially speed up processes and make more effective operational decisions.

Read More

Topics: embedded analytics, Analytics, Business Intelligence, Internet of Things, Streaming Analytics, AI & Machine Learning

Embed Analytics for Greater Reach and More Responsiveness

Posted by David Menninger on Aug 18, 2022 3:00:00 AM

When I looked at the state of analytics recently, it was clear that analytics are not as widely deployed within organizations as they should be. Only 23% of participants in our Analytics and Data Benchmark Research reported that more than one-half of their organization’s workforce are using analytics. There are many elements to becoming a data-driven organization, as my colleague Matt Aslett points out, but analytics are a necessary component. Our research shows that organizations recognize the importance of embedded analytics, ranking it the second most important digital technology in their analytics and data efforts behind big data and ahead of artificial intelligence and machine learning (AI/ML).

Read More

Topics: embedded analytics, Analytics, Analytics & Data

Qlik Advances Self-Service Analytics and Business Intelligence

Posted by David Menninger on Aug 11, 2022 3:00:00 AM

The analytics and business intelligence market landscape continues to grow as more organizations seek robust tools and capabilities to visualize and better understand data. BI systems are used to perform data analysis, identify market trends and opportunities and streamline business processes. They can collect and combine data from internal and external systems to present a holistic view.

Read More

Topics: Analytics, Business Intelligence, Data Governance, Data Management, AI & Machine Learning, Analytics & Data

Denodo Advancing Data Virtualization in the Cloud

Posted by David Menninger on Apr 28, 2022 3:00:00 AM

Organizations have been using data virtualization to collect and integrate data from various sources, and in different formats, to create a single source of truth without redundancy or overlap, thus improving and accelerating decision-making giving them a competitive advantage in the market. Our research shows that data virtualization is popular in the big data world. One-quarter (27%) of participants in our Data Lake Dynamic Insights Research reported they were currently using data virtualization, and another two-quarters (46%) planned to include data virtualization in the future. Even more interesting, those who are using data virtualization reported higher rates of satisfaction (79%) with their data lake than those who are not (36%). Our Analytics and Data Benchmark Research shows more than one-third of organizations (37%) are using data virtualization in that context. Here, too, those using data virtualization reported higher levels of satisfaction (88%) than those that are not (66%).

Read More

Topics: embedded analytics, Analytics, Business Intelligence, AI and Machine Learning, Streaming Analytics

Don’t Rely on Dashboards for Real-Time Analytics

Posted by David Menninger on Mar 31, 2022 3:00:00 AM

I have written previously that the world of data and analytics will become more and more centered around real-time, streaming data. Data is created constantly and increasingly is being collected simultaneously. Technology advances now enable organizations to process and analyze information as it is being collected to respond in real time to opportunities and threats. Not all use cases require real-time analysis and response, but many do, including multiple use cases that can improve customer experiences. For example, best-in-class e-commerce interactions should provide real-time updates on inventory status to avoid stock-out or back-order situations. Customer service interactions should provide real-time recommendations that minimize the time to resolution. Location-based offers should be targeted at the customer’s current location, not their location several minutes ago. Another domain where real-time analyses are critical is internet of things (IoT) applications. Additionally, use cases like predictive maintenance require timely information to prevent equipment failures that help avoid additional costs and damage.

Read More

Topics: Analytics, Business Intelligence, Internet of Things, Data, Digital Technology, AI and Machine Learning, Streaming Analytics, Analytics & Data, Streaming Data & Events

Working Across the Aisle in Analytics: Involving IT and LOB

Posted by David Menninger on Mar 23, 2022 3:00:00 AM

For years, maybe decades, we have heard about the struggles between IT and line-of-business functions. In this perspective, we will look at some of the data from our Analytics and Data Benchmark Research about the roles of IT and line-of-business teams in analytics and data processes. We will also look at some of the disconnects between these two groups. And, by looking at how organizations are operating today and the results they are achieving, we can discern some of the best practices for improving the outcomes of analytics and data processes.

Read More

Topics: Analytics, Business Intelligence, Data, Digital Technology, AI & Machine Learning, Analytics & Data

Looker Simplifies Business Intelligence in the Cloud

Posted by David Menninger on Mar 17, 2022 3:00:00 AM

Organizations face various challenges with analytics and business intelligence processes, including data curation and modeling across disparate sources and data warehouses, maintaining data quality and ensuring security and governance. Traditional processes are slow when transforming large and diverse datasets into something which is easily consumable in BI. And, it can take days or weeks to create reports and dashboards — maybe longer if processes change and new data sources are introduced. Our Analytics and Data Benchmark Research shows that the most time-consuming processes are preparing data, reviewing it for quality issues and preparing reports for presentation and distribution.

Read More

Topics: Big Data, Analytics, Business Intelligence, Cloud

Natural Language Processing Enables Self-service Analytics & BI

Posted by David Menninger on Mar 2, 2022 3:00:00 AM

Natural language processing (NLP) is a field that combines artificial intelligence (AI), data science and linguistics that enables computers to understand, interpret and manipulate text or spoken words. NLP includes generating narratives based on a set of data values, using text or speech as inputs to access information, and analysing text or speech, for instance, to determine its sentiment. There are various techniques for interpreting human language, ranging from statistical and machine learning (ML) methods to rules-based and algorithmic approaches. In this perspective, we will focus on two aspects of NLP: natural language query (NLQ), which offers the ability to use natural language expressions to discover and understand data, and natural language generation (NLG), which uses AI to produce written or spoken narratives from a dataset. NLQ and NLG enable business personnel to communicate information needs with business intelligence (BI) systems more easily.

Read More

Topics: Big Data, Analytics, natural language processing, NLP

Improving the State of Analytics in Organizations

Posted by David Menninger on Feb 24, 2022 3:00:00 AM

Despite all the advances organizations have made with respect to analytics, our most recent research shows the majority of the workforce in the majority of organizations are not using analytics and business intelligence (BI). Less than one-quarter (23%) report that one-half or more of their workforce is using analytics and BI. This is a problem. It means organizations are not enabling their workforce to perform at peak efficiency and effectiveness. It means the workforce in many organizations does not have access to the same information by which they are being measured. It means organizations must find other ways to communicate with, and manage, the workforce.

Read More

Topics: Sales, embedded analytics, Analytics, Business Intelligence, Data, Sales Performance Management, Digital Technology, Digital Commerce, natural language processing, subscription management, partner management, sales engagement, revenue management, Collaborative & Conversational Computing