MicroStrategy is a long-standing business intelligence and analytics vendor that operates worldwide. Founded in 1989, this publicly traded company with hundreds of millions of dollars in revenue recently held its first in-person conference since prior to the pandemic. Similar to previous in-person events, the event was well attended by about 2,000 attendees and exhibitors. The theme, “MicroStrategy One,” is a way to explain the breadth of capabilities the company offers. The breadth of the product offering is one of the company’s greatest strengths, but also one of its biggest challenges.
MicroStrategy World Showcases the Power of One Platform
Topics: embedded analytics, Analytics, Business Intelligence, Digital Technology, natural language processing, Analytics & Data
Artificial intelligence (AI) has evolved from a highly specialized niche technology to a worldwide phenomenon. Nearly 9 in 10 organizations use or plan to adopt AI technology. Several factors have contributed to this evolution. First, the amount of data they can collect and store has increased dramatically while the cost of analyzing these large amounts of data has decreased dramatically. Data-driven organizations need to process data in real time which requires AI. In addition, analytics vendors have been augmenting business intelligence (BI) products with AI. And recently, ChatGPT has raised awareness of AI and instigated research and experimentation into new ways in which AI can be applied. This perspective, the second in a series on generative AI, introduces some of the concepts behind ChatGPT, including large language models and transformers. Understanding how these models work can help provide a better understanding of how they should be applied and what cautions are necessary.
Topics: Analytics, Digital Technology, natural language processing, AI & Machine Learning, Analytics & Data
Organizations are continuously searching for new business opportunities hidden in their data. They are using various technologies including artificial intelligence and machine learning (AI/ML) to uncover granular insights that can support decision-making. Existing tools and dashboards are effective for observing standard metrics; however, they do not address follow-up questions, such as why things are happening or how those events impact performance. Organizations also struggle to derive complete value from big data. Our Analytics and Data Benchmark Research shows that only 1 in 5 organizations are very confident in their ability to analyze large volumes of data.
Topics: Analytics, Business Intelligence, natural language processing, AI & Machine Learning, Decision Intelligence
The 2023 Market Agenda for Analytics: Empowering Workforces to Engage
Ventana Research recently announced its 2023 Market Agenda for Analytics, continuing the guidance we have offered for nearly two decades to help organizations derive optimal value from technology investments to improve business outcomes.
Topics: embedded analytics, Analytics, Business Intelligence, Data, Digital Technology, natural language processing, Process Mining, Analytics & Data, Collaborative & Conversational Computing
Oracle Links Analytics and Business Intelligence in the Cloud
Organizations conduct data analysis in many ways. The process can include multiple spreadsheets, applications, desktop tools, disparate data systems, data warehouses and analytics solutions. This creates difficulties for management to provide and maintain updated information across multiple departments. Our Analytics and Data Benchmark Research shows that organizations face a variety of challenges with analytics and business intelligence. One-third of participants find it difficult to integrate analytics and BI with other business processes. Participants also find that not all software is flexible enough for the constantly changing business environment, and that it is hard to access all data sources.
Topics: embedded analytics, Analytics, Business Intelligence, natural language processing, AI & Machine Learning
Sisense is Sensible for Embedded Analytics and BI
Embedded business intelligence (BI) continues to transform the business landscape, enabling organizations to quickly interpret data and convert it into actionable insights. It allows organizations to extract information in real time and answer wide-ranging business questions. Embedding analytics helps tackle the issue of extracting information from data which is a time-consuming process. Our research shows organizations spend more time cleaning and optimizing data for analysis rather than creating insights. On top of that, they are adding more data sources and information systems which in turn introduces more complexity. Our Analytics and Data Benchmark Research shows that organizations face various challenges with analytics and BI. More than one-third of participants (35%) responded that they find it hard to integrate analytics and BI with business processes and connect to multiple data sources. By embedding analytics and BI into business processes and workflows, organizations can enable users to make critical decisions fast, enhancing overall business agility.
Topics: embedded analytics, Analytics, Business Intelligence, natural language processing, Streaming Analytics, AI & Machine Learning
Augmented Intelligence Reduces Dependency on AI/ML Skill Sets
Business intelligence has evolved. It now includes a spectrum of analytics, one of the most promising of which has been described as augmented intelligence. Some organizations have used the term to describe the practical reality that artificial intelligence with machine learning is not replacing human intelligence, but augmenting it. The term also represents the application of AI/ML to make business intelligence and analytics tools more powerful and easier to use. It’s this latter usage that I prefer and I’d like to explore in this perspective.
Topics: Analytics, Business Intelligence, natural language processing, AI & Machine Learning, Analytics & Data, Collaborative & Conversational Computing
Expanding the Analytics Continuum: From Analysis to Action
I often use the term “analytics” to refer to a broad set of capabilities, deliberately broader than business intelligence. In this Perspective, I’d like to share what decision-makers should consider as they evaluate the range of analytics requirements for their organization.
Topics: Business Intelligence, natural language processing, AI and Machine Learning, Streaming Analytics, Analytics & Data
Organizations are continuously increasing the use of analytics and business intelligence to turn data into meaningful and actionable insights. Our Analytics and Data Benchmark Research shows some of the benefits of using analytics: Improved efficiency in business processes, improved communication and gaining a competitive edge in the market top the list. With a unified BI system, organizations can have a comprehensive view of all organizational data to better manage processes and identify opportunities.
Topics: business intelligence, embedded analytics, Data Governance, Data Management, natural language processing, AI and Machine Learning, data operations, Streaming Analytics, Streaming Data & Events, operational data plaftforms
Data and Analytics Processes: Can We Get Personal?
There is a fundamental flaw in information technology, or at least in the way it is most commonly delivered. Most technology systems are developed under the assumption that all people will use the system primarily in the same way. Sure, there are some options built in — perhaps the same action can be initiated by either clicking on a button, selecting a menu item or invoking a keyboard short-cut. The problem is that when every variation needs to be coded into the system, the prospect of providing personalized software programs to every individual is impractical.
Topics: Business Intelligence, Data Management, natural language processing, AI and Machine Learning, data operations, Analytics & Data