Services for Organizations

Using our research, best practices and expertise, we help you understand how to optimize your business processes using applications, information and technology. We provide advisory, education, and assessment services to rapidly identify and prioritize areas for improvement and perform vendor selection

Consulting & Strategy Sessions

Ventana On Demand

    Services for Investment Firms

    We provide guidance using our market research and expertise to significantly improve your marketing, sales and product efforts. We offer a portfolio of advisory, research, thought leadership and digital education services to help optimize market strategy, planning and execution.

    Consulting & Strategy Sessions

    Ventana On Demand

      Services for Technology Vendors

      We provide guidance using our market research and expertise to significantly improve your marketing, sales and product efforts. We offer a portfolio of advisory, research, thought leadership and digital education services to help optimize market strategy, planning and execution.

      Analyst Relations

      Demand Generation

      Product Marketing

      Market Coverage

      Request a Briefing



        David Menninger's Analyst Perspectives

        About the Analyst

        David Menninger

        David is responsible for the overall research direction of data, information and analytics technologies at Ventana Research covering major areas including Analytics, Big Data, Business Intelligence and Information Management along with the additional specific research categories including Information Applications, IT Performance Management, Location Intelligence, Operational Intelligence and IoT, and Data Science. David is also responsible for examining the role of cloud computing, collaboration and mobile technologies as they affect these areas. David brings to Ventana Research over twenty-five years of experience, through which he has marketed and brought to market some of the leading edge technologies for helping organizations analyze data to support a range of action-taking and decision-making processes. Prior to joining Ventana Research, David was the Head of Business Development & Strategy at Pivotal a division of EMC, VP of Marketing and Product Management at Vertica Systems, VP of Marketing and Product Management at Oracle, Applix, InforSense and IRI Software. David earned his MS in Business from Bentley University and a BS in Economics from University of Pennsylvania.


        Recent Posts

        In today's rapidly evolving technological landscape, artificial intelligence (AI) governance has emerged as a critical ingredient for successful AI deployments. It helps build trust in the results of AI models, it helps ensure compliance with regulations and it is necessary to meet internal governance requirements. Effective AI governance must encompass various dimensions, including data privacy, model drift, hallucinations, toxicity and perhaps most importantly, bias. Unfortunately, we expect...

        Read More

        Topics: AI, AI & Machine Learning, Analytics & Data, Generative AI, Machine Learning Operations

        As I’ve written recently, artificial intelligence governance is a concern for many enterprises. In our recent ISG Market Lens study on generative AI, 39% of participants cited data privacy and security among the biggest inhibitors to adopting AI. Nearly a third (32%) identified performance and quality (e.g., erroneous results), and an equal amount (32%) mentioned legal risk.

        Read More

        Topics: AI, AI & Machine Learning, Analytics & Data, Generative AI, Machine Learning Operations

        Having just completed our AI Platforms Buyers Guide assessment of 25 different software providers, I was surprised to see how few provided robust AI governance capabilities. As I’ve written previously, data governance has changed dramatically over the last decade, with nearly twice as many enterprises (71% v. 38%) implementing data governance policies during that time. With all this attention on data governance, I had expected AI platform software providers would recognize the needs of...

        Read More

        Topics: AI, AI & Machine Learning, Analytics & Data, Machine Learning Operations

        I am happy to share insights gleaned from our latest Buyers Guide, an assessment of how well software providers’ offerings meet buyers’ requirements. The AI Platforms: Ventana Research Buyers Guide is the distillation of a year of market and product research by Ventana Research.

        Read More

        Topics: AI, Generative AI, Machine Learning Operations

        The artificial intelligence (AI) market is exploding with activity, which is part of the reason we recently announced that we have dedicated an entire practice at Ventana Research to the topic. Large language models (LLMs) and generative AI (GenAI) have taken the AI world by storm. In fact, we assert that through 2026, one-half of all AI investments will be based on generative rather than predictive AI. My colleague Rob Kugel has written about how AI can improve productivity and benefit the...

        Read More

        Topics: AI, natural language processing, AI & Machine Learning, Analytics & Data, Generative AI

        I recently attended the Salesforce Trailblazer DX event to learn more about Salesforce’s artificial intelligence products and strategy. Fueled by generative AI, awareness and investment in AI seems to be exploding. ISG research shows that enterprises plan to nearly triple the portion of budgets allocated to AI over the next two years. This doesn’t come as a big surprise when you look at the outcomes enterprises are achieving: Of those that have invested in AI, more than 8 in 10 (84%) have had...

        Read More

        Topics: Artificial intelligence, AI, natural language processing, Generative AI, Deep Learning, Model Building and Large Language Models, Computer Vision, Machine Learning Operations

        Data and analytics have become increasingly important to all aspects of business. The modern data and analytics stack includes many components, which creates challenges for enterprises and software providers alike. As my colleague Matt Aslett points out, a better term might be modern data and analytics smorgasbord. There are arguments for and against using an assortment of tools versus a consolidated platform. For example, purchasing, integrating and deploying a variety of tools can be complex....

        Read More

        Topics: Analytics, AI, data operations, Analytics & Data, Generative AI, Data Intelligence

        In the technology industry, 2023 will be remembered as the year of generative artificial intelligence. Yes, the world was made aware of GenAI when ChatGPT was publicly launched in November of 2022, but few knew the impact it would have at that point in time. Since then, GenAI has taken the world by storm, with vendors applying the technology to make it easier to ask questions about data, write code (including SQL), prepare data for analyses, document data pipelines and use software products...

        Read More

        Topics: AI, AI & Machine Learning, Analytics & Data, Generative AI, Model Building and Large Language Models

        Interest in artificial intelligence (AI) is exploding driven in large part by the widespread interest in generative AI. ISG’s AI Buyer Behavior Survey reported that more than 6 in 10 participants have at least one AI application in production. However, despite the ease with which individuals can use AI as a result of natural language processing, creating and managing AI models is still a challenge. First, there is a shortage of skills. Second, the process itself involves many parts, each of...

        Read More

        Topics: Data Science, AI, AI & Machine Learning, Analytics & Data, Model Building and Large Language Models, Machine Learning Operations, MLOps

        Unstructured data has been a significant factor in data lakes and analytics for some time. Twelve years ago, nearly a third of enterprises were working with large amounts of unstructured data. As I’ve pointed out previously, unstructured data is really a misnomer. The data is structured; it's just not structured into rows and columns that fit neatly into a relational table like much of the other information enterprises process. Consequently, it requires different skills, different technology...

        Read More

        Topics: Artificial intelligence, AI & Machine Learning, Analytics & Data, Computer Vision
        JOIN OUR COMMUNITY

        Our Analyst Perspective Policy

        • Ventana Research’s Analyst Perspectives are fact-based analysis and guidance on business, industry and technology vendor trends. Each Analyst Perspective presents the view of the analyst who is an established subject matter expert on new developments, business and technology trends, findings from our research, or best practice insights.

          Each is prepared and reviewed in accordance with Ventana Research’s strict standards for accuracy and objectivity and reviewed to ensure it delivers reliable and actionable insights. It is reviewed and edited by research management and is approved by the Chief Research Officer; no individual or organization outside of Ventana Research reviews any Analyst Perspective before it is published. If you have any issue with an Analyst Perspective, please email them to ChiefResearchOfficer@ventanaresearch.com

        View Policy

        Subscribe to Email Updates

        Posts by Month

        see all

        Posts by Topic

        see all


        Analyst Perspectives Archive

        See All