Organizations are always looking to improve their ability to use data and AI to gain meaningful and actionable insights into their operations, services and customer needs. But unlocking value from data requires multiple analytics workloads, data science tools and machine learning algorithms to run against the same diverse data sets. Organizations still struggle with limited data visibility and insufficient insights, which are often caused by a multitude of reasons such as analytic workloads running independently, data spread across multiple data centers, data governance, etc. In our ongoing benchmark research project, we are researching the ways in which organizations work with big data and the challenges they face.
Topics: business intelligence, embedded analytics, Analytics, Collaboration, Data Governance, Data Preparation, Data, Information Management (IM), data lakes, AI and Machine Learning
I recently attended SAS Institute’s analyst relations conference. There the company provided updates on its financial performance and its Viya platform and a glimpse into some of its future plans.
Topics: Big Data, Data Science, Mobile Technology, business intelligence, Analytics, Cloud Computing, Collaboration, Data Governance, Data Integration, Data Preparation, Internet of Things, Information Optimization, Machine Learning and Cognitive Computing, Machine Learning Digital Technology